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Multiplicity of the Ground State of Large Alternant 
Organic Molecules with Conjugated Bonds 

(Do Organic Ferromagnetics Exist ?) 

Alexandr A. Ovchinnikov 

L.Ya. Karpov Physical Chemistry Institute, ul. Obukha 10, Moscow, 107120, U.S.S.R. 

The multiplicity and the full spin of the ground state of large alternate molecules 
with conjugated bonds are considered. It is strictly shown that if the numbers of 
starred and unstarred atoms (say, carbon) differ from each other the full spin 
of the molecule is more than zero. Some possible planar and linear molecules 
having the full spin to be proportional to their sizes are presented. Particularly, 
they would be ferromagnets at infinite sizes. 
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1. Introduction 

It is well known that alternant hydrocarbons have a number of outstanding 
chemical and physical properties, particularly, high thermochemical stability. 
We may recall that a conjugate system is called an alternant one if its atoms can 
be subdivided into two groups, denoted by (A +) and (A), respectively, so that each 
atom A § is surrounded only by A atoms, and vice versa. These properties of 
alternant hydrocarbons are readily apparent from a consideration of such systems 
within the framework of the Htickel method. In particular, the parity theorem is 
valid, according to which the Hiickel orbital energies are symmetrical with respect 
to a certain energy equal to the Coulomb integral in the MO method. In alternant 
hydrocarbons the charge is uniformly distributed throughout the molecule, which 
results in a very insignificant (or zero, in case of symmetry) dipole moment. 
Proof of these theorems and their corollaries can be found in Dewar's book [1]. 

One interesting class of alternant hydrocarbons is represented by molecules in 
which the number of A and A + atoms is unequal. It is found that the ground state 
of these molecules displays high multiplicity, i.e. their total spin S is positive and 
equals: 

s InA--nA+l, 
2 (1) 
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where n A and n A + are the numbers of  carbon atoms in groups A and A +, respec- 
tively. One consequence of  this is that a polymer molecule of the type shown in 
Fig. I has a total spin proportional to the number of  chain links (X being some 
divalent atom, such as O, S, etc.), i.e. exhibits ferromagnetism. 

X:O,S 
Fig. 1. Macromolecule having a resultant spin proportional to its 
length 

It is impossible to prove the assertion expressed by Eq. (1) by any one-electron 
method whatsoever (including the Hiickel method). For this reason, the present 
paper is devoted to a treatment of  this case within the more realistic framework of 
the valence bond method. In [2] Bulaevsky has shown that the valence bond 
method is a very accurate means of describing conjugate hydrocarbons if the 
system's ground state and the lowest quasihomeopolar excited states are con- 
sidered. He derived an expression for the exchange integral in terms of the para- 
meters of the Pariser-Parr-Pople Hamiltonian [3]. Thereby, investigation of any 
conjugate system is reduced to a study of the corresponding Heisenberg Hamil- 
tonian spectrum of  the molecule: 

H= Z 4, ,'(S, Sv _1), (2) 
i(r) 

where S t is a spin operator (of spin 1/2) of the carbon atom with subscript l. Sum- 
mation includes only the nearest neighbours; J~, r are exchange integrals, their 
magnitude depending on the length of  the chemical bond between two adjacent 
atoms I and l'; non-neighbour exchange integrals are small. It is essential that all 
Jr, r > 0 (i.e. the bonds between atoms are antiferromagnetic). 

The exchange integral Jr, r for two neighbour atoms can be expressed in terms of the 
parameters of a Pariser-Parr-Pople Hamiltonian: 

1 2 J 1 , 2 = ~ [ x / ( ] ~ l l - y 1 2 )  -q- 16fl2-(711-712)], 

where fll 2 is a resonance integral; ? 11 and ? 12 are Coulomb integrals for a hydro- 
carbon molecule. 

In Sect. 2 we shall prove for Hamiltonian (2) an important theorem of nonde- 
generacy (i.e. uniqueness) of the lowest state with respect to energy with a given 
Sz-projection of the total spin upon the z-axis, as well as Eq. (1). We shall then 
consider a few examples of  determining multiplicity in simple radical molecules. 
And finally, in Sects. 4 and 5 we shall describe a number of possible types of planar 
and linear conjugate magnetic systems with heteroatoms. 
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2. Nondegeneracy of Ground State in Alternant Systems 

We shall now demonstrate that the lowest energy state with a given S z for Hamil- 
tonian (2) is nondegenerate by the method suggested by Lieb, Schultz and Mattis 
in [-4], except that the Hamiltonian is here somewhat more general, namely: 

E s;, + s; s/, )+ Z (3) 
1, 1' 1, 1" 

For J},~!=J~,]!=Jz, v Eq. (3) reduces to Eq. (2). We require, however, that all 
J},]! and J},]! are positive. 

S? =S~+iS~t, S [ -=S ' { - iS~ .  (4) 

If J[,~! = 0, Hamiltonian (3) becomes an Ising Hamiltonian with easily determinable 
eigenfunctions and eigenvalues, since all S 7 are commutable with the Hamiltonian. 
Therefore, S{ can be regarded as numbers (�89 or -�89 and S[S~; =�88 if the spins of  
adjacent atoms are unidirectional, and equal to - � 88  if the spins are oppositely 
directed. To determine the lowest state energy, a spin configuration should be 
chosen such that: 

Z T(2).~z.~'z z'-z - , '  ( 5 )  
Z, l' 

is minimum. Since all J~]! > 0, the spin distribution in an alternant molecule 
corresponding to the lowest energy value is when all the atoms of  group A + have 
Sl=__ ~1 (upward spin), and the atoms of  group A have S 7 = - �89  (downward spin), 
or vice versa. Indeed, in that case all the terms in (5) will be negative. Consequently, 
the ground state will correspond to a total projection S z equal to 

s i , .-, .+l 
= 2 " (6) 

If  the lowest state is nondegenerate, it means that for any variation of  exchange 
integrals J~,]! and j~,2! (but such that J},~! > 0, j~2! > 0), it does not intersect with 
other SL This leads to a situation when even for those values of  J},]! and J~,~! which 
characterize a molecule in equilibrium configuration, in the ground state we have 
S==ln.-n.+l/2. 
We shall give the proof  of  the nondegeneracy theorem in an abridged form as it 
is a nearly word-to-word repetition of the proof  given in [4]. 

To begin with, we carry out the canonical transformation for the atoms of  group A + : 

S{  --+ - S{ ,  S[  -+ - S{, S{  ---, - S 7 (7) 

leaving the spin operators of  A atoms unchanged. Then, the Hamiltonian (3) for 
alternant molecules can be rewritten in the form: 

H'= Z J;,9(S/S;, +S;S/,)+ Z (8) 
l , l"  l , l"  

Let amplitude c= correspond to a certain configuration of  spins in molecule 0r 
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System energy can be rewritten in terms of amplitude c a as 

E'=-�89 Z J~l,)~'e,G't,)+ Z J~ 2)c2" (9) 
at, att at 

Positive numbers j~i) depend on the subscripts of the two configurations ~ and ~'. 
Configuration ~' arises from ~ under the action of the operator: 

s?  s;: + sT . 

Here as usual, the operator St + turns the spin of the lth atom upwards and S~- 
downwards (or results in zero). Summation in (9) is carried out over all possible 
configurations. Besides, there is a natural normalization condition: 

Z c~-- 1. (10) 
~t 

It is clear that for the lowest state all c a > 0. If  there were any amplitudes c a < 0, 
then there would be a certain number of  positive terms in the first sum of (9), and 
using a set of  amplitudes Ic~l instead of  c~ we would be able to decrease the energy 
still further, in contradiction to the initial assumption. 

There also can be no zero values of  cat, since in the equation for cat we have: 

t _ _  1 1 ( 1 )  p _ l _ / ( 2 ) r  E cat----~ Z (11) 
~'(~) 

and if cat = 0, it would give that:  

(1) c ,  (12) J~, at, at (~)= 0 
~'(~) 

again leading to negative amplitudes. Thus, for the lowest energy state, all c a, > 0. 
No two different states with all c a positive can exist because of their orthogonality. 
This remark completes the proof. 

From the above proof  concerning the value of S z in the ground state of  Ising 
Hamiltonian configuration it follows that in the limit, ,r when a,, v = 0 for an alternant 
molecule in the ground state: 

Inn--hA+l" (13) 
2 

A consideration of special cases, particularly those of 1) open chains and cycles 
with an even number of atoms; 2) molecules involving symmetry with respect to 
substitution of unasterisked atoms by asterisked ones suggests that (13) can be 
written as a precise equality: 

S :  Ing-  nA+l. (14) 
2 

3. Examples 

Let us consider a few examples. 
In the Ising limit, the lowest energy configuration corresPOnds to the spin distri- 
bution of Fig. 2b. 
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Fig. 2. Trimethylmethylene molecule: (a) atoms of two groups A § and 
A; (b) spin distribution in atoms in the ground state in the Ising limit a 

Hence, for this molecule S = 1, but not S =  2, because this molecule can be derived 
f rom the allyl radical for which S= �89  in the ground state, by adding one carbon 
atoms also having S=�89 According to the angular moment  addition rule, the 
resultant spin can be either 0 or 1. Therefore, the only possibility is that S =  1. 

We note here without p roof  that the molecules shown in Figs. 3a, b have S=�89  
(Fig. 3a) and S =  0 (Fig. 3b). The latter molecule is diamagnetic although there 

o 

a, 8 

Fig. 3. Hydrocarbon molecules having S = �89 (a) and S = 0 (b) in ~- 
the ground state ~ = ~  ~=0 

exists no Kekul6 structure to describe it. Therefore, an alternant molecule may 
have a diamagnetic ground state even if there is no Kekul6 structure to represent it. 

Figure 4 shows several hydrocarbons of this kind: 

Fig. 4. Large hydrocarbon molecules: (a) Chichibabin hydrocarbon ~ /"-N 
(b) Schlenk-Brauns hydrocarbon, (c) a hydrocarbon having different 
number of atoms in the two groups. Isomers (a) and (b) must have 
S = 0 in the ground state, and isomer (c) - S= 1 

(Figure 4a): Chichibabin hydrocarbon which has been shown both experimentally 
and theoretically by Syrkin and Dyatkina [5] to have a very low singlet-to-triplet 
transition energy, even though it is diamagnetic in its ground state; 
(Figure 4b): Schlenk-Brauns hydrocarbon.  There is a standing opinion in the 
literature that this hydrocarbon is a genuine biradical (i.e. in its ground state 
S =  1). This contradicts our predictions, since this hydrocarbon has a plane of  
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symmetry with respect to substitution of unasterisked atoms for the asterisked 
ones. In the ground state such a molecule must always have S=0,  i.e. exhibit 
diamagnetic properties at sufficiently low temperatures. 

(Figure 4c)" The third hydrocarbon shown in Fig. 4c does not'have such a sym- 
metry, and in its ground state S =  1. 

The Leo triradical (Fig. 5) is analogous to the above compounds but has S=~  in 
the ground state. 

5=3A Fig. 5. Leo triradical S = ~  

Figure 6 illustrates a condensed aromatic system which, depending on its size, 
can have a very high total spin in the ground state. Thus, if such a system has L 
rows of rings (Fig. 6 shows 5 rows), the system's total spin will be ( L -  1)/2 (for the 
molecule shown in Fig. 6, S =  2). 

L 

3 

5= -t 
Fig. 6. Triangular condensed aromatic system comprising L rows of  
rings (L = 5) and having the ground state spin S = ( L -  1)/2 (S = 2) 

Other examples of polyradicals can be found in the book by A. L. Buchachenko : 
~Stable radicals" [6]. 

4. Infinite Systems 

Now we shall give a few examples of molecules having total spin proportional 
to their size. Figs. 7 and 8 show several possible polymer systems. R can in all 
cases be selected from either the divalent atoms of O and S, or some other stabilizing 
group. 
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Fig. 7. Macromolecules of hydrocarbons with periodically 
introduced heteroatoms 
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5-** ~-~o,S 

What is shown in Fig. 8 is not a hydrocarbon polyradical. It should be mentioned 
that all the arguments set forth in Sect. 2 are easily applicable to alternant systems 
with heteroatoms. 

Fig. 8. A polysemiquinone acetylene macromolecule 

Finally, Figs 9-11 give a few examples of planar infinite systems with infinite 
total spin in the ground state (i.e. ferromagnetics). 

Figure 9 shows a planar system that can be constructed from graphite lattice by 
substituting boron atoms for certain carbon atoms in the order indicated (some 

Fig. 9. Two-dimensional structure derived from graphite lattice 
by substituting boron atoms for certain carbon atoms O--B 

other trivalent atom can be employed having suitable length of chemical bond 
between said atom and carbon atom). Note that irregular lattices with boron 
atoms are well known. 

In Fig. 11 the group denoted by X can be any trivalent group or an atom of ap- 
propriate size. Thus, the question that opens the present paper, viz. : "Do organic 

Fig. 10. Hypothetical two-dimensional system comprising poly- 
acene macromolecules linked via nitrogen atoms 

N N N N N ~=oo 
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X=B,N 
Fig. 11. Two-dimensional structure derived from graphite lattice 
by substituting boron or nitrogen atoms for certain carbon atoms 

ferromagnetics exist ?" - we can now answer in the affirmative. Quantitative 
evaluation of their parameters (Curie temperatures, etc.) is a matter of the nearest 
future. 

5. Non-Alternant Systems 

To conclude, we shall make a few remarks concerning non-alternant systems. For  
these, it is impossible to prove the theorem of nondegeneracy of the ground state, 
and we are therefore not in a position to determine from general considerations the 
system's resultant spin in the ground state. However, we can have some idea of 
the reactions in which non-alternant systems are converted to alternant ones. 
One example of  such a reaction is breaking up a ring consisting of  an odd number 
of  carbon atoms. 

Consider a fulvene molecule (Fig. 12a). Its ground state is characterized by S =  0. 
When the cycle is broken as shown in Fig. 12b, the molecule becomes a linear 
alternant system with S =  0, and when the cycle is broken in a different way, as 
shown in Fig. 12c, it becomes an alternant system with S = 1 in the ground state. 

So0 5~0 5=1 
*- 6 c 

Fig. 12. A fulvene molecule (a) and two alternant molecules de- 
rived from it, with S =  0 (b) and S =  1 (c), by breaking different 
bonds of the five-member fulvene ring 

It can be concluded that the reaction which breaks the ring in the manner shown 
in Fig. 12b can be effected under heating, and that breaking the ring as shown in 
Fig. 12c can be effected by exciting into the triplet state, i.e. photochemically. 
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